Step 2: Click "Simplify" to get a simplified version of the entered expression. This website uses cookies to ensure you get the best experience on our website. We can use the product rule of exponents to simplify expressions that are a product of two numbers or expressions with the same base but different exponents. Welcome to our step-by-step math solver! What are the steps for simplifying expressions. In this equation, you'd start by simplifying the part of the expression in parentheses: 24 - 20. 2 (24 - 20)2 + 18 / 6 - 30. For any real number [latex]a[/latex] and natural numbers [latex]m[/latex] and [latex]n[/latex], the product rule of exponents states that. What are the steps for simplifying expressions Step 1: Identify the expression you need to simplify. Simplifying Expressions with Distributive Property, Addition and subtraction of algebraic expressions. Free simplify calculator - simplify algebraic expressions step-by-step. When using the product rule, different terms with the same bases are raised to exponents. Simplifying expressions with exponents calculator | Zens The calculator above accepts negative bases, but does not compute imaginary numbers. When using the power rule, a term in exponential notation is raised to a power. Recall that to simplify an expression means to rewrite it by combing terms or exponents; in other words, to write the expression more simply with fewer terms. Exponent Calculator - Simplify Exponential Expression. simplify rational or radical expressions with our free step-by-step math First Law of Exponents If a and b are positive integers and x is a real number Deal with math question Math is a subject that often confuses students. How to Use Exponents on a Scientific Calculator | Sciencing algebra simplify division equations 6th grade Math TEKS chart source code of rational expression calculator algebraic rational expressions simplifying. To use the Simplify Calculator, simply enter your expression into the input field and press the Calculate button. Step 3: Finally, the value of the given exponent will be displayed in the output field. Notice that the exponent of the quotient is the difference between the exponents of the divisor and dividend. Exponents Step 2: Use the exponent rules to simplify terms containing exponents. simplify, solve for, expand, factor, rationalize. Use the properties of logarithms: If an expression contains logarithms, you can use the properties of logarithms to simplify it. Core connections geometry textbook answers, Equation of a line parallel to another line through a point calculator, Find the volume of the hemisphere quizizz, Find the zeros of the following polynomial calculator, Finding the 5th term in a sequence calculator, How to find critical values of a function, Non homogeneous second order differential equation solver, Precalculus graphical numerical algebraic seventh edition. Exponent Calculator Next, we separate them into multiplication: 16/8 times p/p^3 times q^2 / q^4 times r^9. The result is that [latex]{x}^{3}\cdot {x}^{4}={x}^{3+4}={x}^{7}[/latex]. Exponent Properties, Rules & Examples | What is an Exponent in Math? There are rules in algebra for simplifying exponents with different and same bases that we can use. This is the product rule of exponents. For any nonzero real number [latex]a[/latex], the zero exponent rule of exponents states that. Being a virtual student, it's been able to help study and understand and breakdown concepts that I was not previously aware of. We are asked to simplify using positive exponents: p^(-2) is the same as 1/p^2; q^(-2) is the same 1/q^2. Do not simplify further. After this lesson you'll be able to simplify expressions with exponents. Equation Simplifying Calculator - Wyzant Lessons How to simplify an expression with exponents | Math Calculators Distributive property states that an expression given in the form of x (y + z) can be simplified as xy + xz. How to Simplify Expressions with Exponents - Study.com Looking for a quick and easy way to get help with your homework? Example: Simplify the expression: 3/4x + y/2 (4x + 7). Exponents are supported on variables using the ^ (caret) symbol. Simplifying Expressions Calculator. BYJU'S online simplifying. Simplifying Expressions Calculator is a free online tool that displays the simplification of the given algebraic expression. Here are the basic steps to follow to simplify an algebraic expression: remove parentheses by multiplying factors use exponent rules to remove parentheses in terms with exponents combine like terms by adding coefficients combine the constants Let's work through an example. Multiply the exponents on the left.Write the exponent 1 on the right.Since the bases are the same, the exponents must be equal.Solve for p. So ( 8 1 3) 3 = 8. This video looks at how to work with expressions that have rational exponents (fractions in the exponent). Simplify expressions with positive exponents calculator Consider the product [latex]{x}^{3}\cdot {x}^{4}[/latex]. Really a helpful situation where you can check answers after u solve a problem, and if your wrong, u can always fix it and learn from mistakes using this app, also thank you for the feature of calculating directly from the paper without typing. Exponent Base & Type | What is a Positive Exponent? The E13 portion of the result represents the exponent 13 of ten, so there are a maximum of approximately [latex]1.3\times {10}^{13}[/latex] bits of data in that one-hour film. For any real numbers [latex]a[/latex] and [latex]b[/latex], where [latex]b\neq0[/latex], and any integer [latex]n[/latex], the power of a quotient rule of exponents states that. Simplification can also help to improve your understanding of math concepts. You can have more time for your hobbies by making small changes to your daily routine. Our expert tutors are available 24/7 to give you the answer you need in real-time. Simplifying Expressions - Definition, With Exponents, Examples - Cuemath Then we simplify the terms containing exponents. Simplifying Expressions This section will provide several examples of how to simplify expressions with exponents including at least one problem about each property given above. Solutions Graphing Practice; New Geometry; Calculators; Notebook . Choose "Simplify" from the topic selector and click to see the result in our Algebra Calculator! Choose "Simplify" from the topic selector and click to see the result in our Algebra Calculator! If we equate the two answers, the result is [latex]{t}^{0}=1[/latex]. Write answers with positive exponents. Consider the example [latex]\frac{{y}^{9}}{{y}^{5}}[/latex]. How to Simplify Expressions with Exponents - Study.com Simplifies expressions step-by-step and shows the work! Let's assume we are now not limited to whole numbers. Simplify Calculator. Complex numbers involve the quantity known as i , an "imaginary" number with the property i = 1.If you have to simply an expression involving a complex number, it might seem daunting, but it's quite a simple process once you learn the basic rules. Products of exponential expressions with the same base can be simplified by adding exponents. Simplify radical,rational expression with Step. Write each of the following quotients with a single base. . Simplify expressions with negative exponents calculator - Apps can be a great way to help learners with their math. Exponent Calculator - Simplify Exponential Expression - Mathway Simplifying dividing algebraic expressions, solve 3x3 systems of linear equations with TI-84 calculator, solving parabola functions, Easiest way to Factor a third-degree polynomial. Use our example, [latex]\frac{{h}^{3}}{{h}^{5}}[/latex]. Simplifying expressions with exponents calculator free Factoring can help to make the expression more compact and easier to work with. Use the properties of exponents: If an expression contains exponents, you can use the properties of exponents to simplify it. Practice your math skills and learn step by step with our math solver. Combining like terms Calculator & Solver - SnapXam Notice that the exponent of the product is the sum of the exponents of the terms. Answer Comment ( 3 votes) Upvote Downvote Flag more The procedure to use the negative exponents calculator is as follows: Step 1: Enter the base and exponent value in the respective input field. In the denominator, I want the xs over each other and the ys over each other, so I write x^7y^3. Simplify the math operation ie., on multiplying the two large exponents, we will get the final output. Suppose you want the value y x. Use the product rule to simplify each expression. This is in simplified form using positive exponents. Simplify an expression or cancel an expression means reduce it by grouping terms. Be careful to distinguish between uses of the product rule and the power rule. Algebra Calculators Guide: 144 Calculators Separated by Skill Level and The simplify calculator will then show you the steps to help you learn how to simplify your algebraic expression on your own. . There will be times when working with expressions will be easier if you use rational exponents and times when it will be easier if you use radicals. The calculator will show you each step with easy-to-understand explanations . Simplifying Exponents. If you're having problems memorizing these properties, I suggest using flash cards. Those possibilities will be explored shortly. Solve Now How to Simplify Exponents or Powers on the TI Simplify radical,rational expression with Step The simplification calculator allows you to take a simple or complex expression and simplify and reduce the expression to it's simplest form. MathHelp.com Simplifying Expressions Simplify a6 a5 The rules tell me to add the exponents. First, we open the brackets, if any. Now, let us learn how to use the distributive property to simplify expressions with fractions. succeed. Overall, simplifying algebraic expressions is an important skill that can help you to save time, improve your understanding of math, and develop your problem-solving skills. Various arithmetic operations like addition, subtraction, multiplication, and division can be applied to simplify . Putting the answers together, we have [latex]{h}^{-2}=\frac{1}{{h}^{2}}[/latex]. When we use rational exponents, we can apply the properties of exponents to simplify expressions. Psychological Research & Experimental Design, All Teacher Certification Test Prep Courses, Factoring with FOIL, Graphing Parabolas and Solving Quadratics. Some of the rules for simplifying expressions are listed below: To simplify expressions with exponents is done by applying the rules of exponents on the terms. 638+ Math Specialists 4.8/5 Quality score 85636+ Student Reviews Get Homework Help By simplifying the expression, you can eliminate unnecessary terms and constants, making it easier to focus on the important parts of the equation and work through it step by step. How to simplify algebraic expressions with exponents and variables A factor with a negative exponent becomes the same factor with a positive exponent if it is moved across the fraction barfrom numerator to denominator or vice versa. Simplify
This is true for any nonzero real number, or any variable representing a nonzero real number. Simplifying Radical Expressions replace the square root sign ( ) with the letter r. show help examples Preview: Input Expression: Examples: r125 8/r2 (1+2r2)^2 [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]\begin{array}{ccc}\hfill {\left({e}^{-2}{f}^{2}\right)}^{7}& =& {\left(\frac{{f}^{2}}{{e}^{2}}\right)}^{7}\hfill \\ & =& \frac{{\left({f}^{2}\right)}^{7}}{{\left({e}^{2}\right)}^{7}}\hfill \\ & =& \frac{{f}^{2\cdot 7}}{{e}^{2\cdot 7}}\hfill \\ & =& \frac{{f}^{14}}{{e}^{14}}\hfill \end{array}[/latex], [latex]{\left(\frac{a}{b}\right)}^{n}=\frac{{a}^{n}}{{b}^{n}}[/latex], CC licensed content, Specific attribution, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2, http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface, [latex]\left(3a\right)^{7}\cdot\left(3a\right)^{10} [/latex], [latex]\left(\left(3a\right)^{7}\right)^{10} [/latex], [latex]\left(3a\right)^{7\cdot10} [/latex], [latex]{\left(a\cdot b\right)}^{n}={a}^{n}\cdot {b}^{n}[/latex], [latex]\left(-3\right)^{5}\cdot \left(-3\right)[/latex], [latex]{x}^{2}\cdot {x}^{5}\cdot {x}^{3}[/latex], [latex]{t}^{5}\cdot {t}^{3}={t}^{5+3}={t}^{8}[/latex], [latex]{\left(-3\right)}^{5}\cdot \left(-3\right)={\left(-3\right)}^{5}\cdot {\left(-3\right)}^{1}={\left(-3\right)}^{5+1}={\left(-3\right)}^{6}[/latex], [latex]{\left(\frac{2}{y}\right)}^{4}\cdot \left(\frac{2}{y}\right)[/latex], [latex]{t}^{3}\cdot {t}^{6}\cdot {t}^{5}[/latex], [latex]{\left(\frac{2}{y}\right)}^{5}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}[/latex], [latex]\frac{{\left(-2\right)}^{14}}{{\left(-2\right)}^{9}}={\left(-2\right)}^{14 - 9}={\left(-2\right)}^{5}[/latex], [latex]\frac{{t}^{23}}{{t}^{15}}={t}^{23 - 15}={t}^{8}[/latex], [latex]\frac{{\left(z\sqrt{2}\right)}^{5}}{z\sqrt{2}}={\left(z\sqrt{2}\right)}^{5 - 1}={\left(z\sqrt{2}\right)}^{4}[/latex], [latex]\frac{{\left(-3\right)}^{6}}{-3}[/latex], [latex]\frac{{\left(e{f}^{2}\right)}^{5}}{{\left(e{f}^{2}\right)}^{3}}[/latex], [latex]{\left(e{f}^{2}\right)}^{2}[/latex], [latex]{\left({x}^{2}\right)}^{7}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}[/latex], [latex]{\left({x}^{2}\right)}^{7}={x}^{2\cdot 7}={x}^{14}[/latex], [latex]{\left({\left(2t\right)}^{5}\right)}^{3}={\left(2t\right)}^{5\cdot 3}={\left(2t\right)}^{15}[/latex], [latex]{\left({\left(-3\right)}^{5}\right)}^{11}={\left(-3\right)}^{5\cdot 11}={\left(-3\right)}^{55}[/latex], [latex]{\left({\left(3y\right)}^{8}\right)}^{3}[/latex], [latex]{\left({t}^{5}\right)}^{7}[/latex], [latex]{\left({\left(-g\right)}^{4}\right)}^{4}[/latex], [latex]\frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}[/latex], [latex]\frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}[/latex], [latex]\begin{array}\text{ }\frac{c^{3}}{c^{3}} \hfill& =c^{3-3} \\ \hfill& =c^{0} \\ \hfill& =1\end{array}[/latex], [latex]\begin{array}{ccc}\hfill \frac{-3{x}^{5}}{{x}^{5}}& =& -3\cdot \frac{{x}^{5}}{{x}^{5}}\hfill \\ & =& -3\cdot {x}^{5 - 5}\hfill \\ & =& -3\cdot {x}^{0}\hfill \\ & =& -3\cdot 1\hfill \\ & =& -3\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left({j}^{2}k\right)}^{4}}{\left({j}^{2}k\right)\cdot {\left({j}^{2}k\right)}^{3}}& =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{1+3}}\hfill & \text{Use the product rule in the denominator}.\hfill \\ & =& \frac{{\left({j}^{2}k\right)}^{4}}{{\left({j}^{2}k\right)}^{4}}\hfill & \text{Simplify}.\hfill \\ & =& {\left({j}^{2}k\right)}^{4 - 4}\hfill & \text{Use the quotient rule}.\hfill \\ & =& {\left({j}^{2}k\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1& \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{5{\left(r{s}^{2}\right)}^{2}}{{\left(r{s}^{2}\right)}^{2}}& =& 5{\left(r{s}^{2}\right)}^{2 - 2}\hfill & \text{Use the quotient rule}.\hfill \\ & =& 5{\left(r{s}^{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 5\cdot 1\hfill & \text{Use the zero exponent rule}.\hfill \\ & =& 5\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\frac{{\left(d{e}^{2}\right)}^{11}}{2{\left(d{e}^{2}\right)}^{11}}[/latex], [latex]\frac{{w}^{4}\cdot {w}^{2}}{{w}^{6}}[/latex], [latex]\frac{{t}^{3}\cdot {t}^{4}}{{t}^{2}\cdot {t}^{5}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}[/latex], [latex]\frac{{\theta }^{3}}{{\theta }^{10}}={\theta }^{3 - 10}={\theta }^{-7}=\frac{1}{{\theta }^{7}}[/latex], [latex]\frac{{z}^{2}\cdot z}{{z}^{4}}=\frac{{z}^{2+1}}{{z}^{4}}=\frac{{z}^{3}}{{z}^{4}}={z}^{3 - 4}={z}^{-1}=\frac{1}{z}[/latex], [latex]\frac{{\left(-5{t}^{3}\right)}^{4}}{{\left(-5{t}^{3}\right)}^{8}}={\left(-5{t}^{3}\right)}^{4 - 8}={\left(-5{t}^{3}\right)}^{-4}=\frac{1}{{\left(-5{t}^{3}\right)}^{4}}[/latex], [latex]\frac{{\left(-3t\right)}^{2}}{{\left(-3t\right)}^{8}}[/latex], [latex]\frac{{f}^{47}}{{f}^{49}\cdot f}[/latex], [latex]\frac{1}{{\left(-3t\right)}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}[/latex], [latex]{b}^{2}\cdot {b}^{-8}={b}^{2 - 8}={b}^{-6}=\frac{1}{{b}^{6}}[/latex], [latex]{\left(-x\right)}^{5}\cdot {\left(-x\right)}^{-5}={\left(-x\right)}^{5 - 5}={\left(-x\right)}^{0}=1[/latex], [latex]\frac{-7z}{{\left(-7z\right)}^{5}}=\frac{{\left(-7z\right)}^{1}}{{\left(-7z\right)}^{5}}={\left(-7z\right)}^{1 - 5}={\left(-7z\right)}^{-4}=\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]\frac{{25}^{12}}{{25}^{13}}[/latex], [latex]{t}^{-5}=\frac{1}{{t}^{5}}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}[/latex], [latex]{\left(a{b}^{2}\right)}^{3}={\left(a\right)}^{3}\cdot {\left({b}^{2}\right)}^{3}={a}^{1\cdot 3}\cdot {b}^{2\cdot 3}={a}^{3}{b}^{6}[/latex], [latex]2{t}^{15}={\left(2\right)}^{15}\cdot {\left(t\right)}^{15}={2}^{15}{t}^{15}=32,768{t}^{15}[/latex], [latex]{\left(-2{w}^{3}\right)}^{3}={\left(-2\right)}^{3}\cdot {\left({w}^{3}\right)}^{3}=-8\cdot {w}^{3\cdot 3}=-8{w}^{9}[/latex], [latex]\frac{1}{{\left(-7z\right)}^{4}}=\frac{1}{{\left(-7\right)}^{4}\cdot {\left(z\right)}^{4}}=\frac{1}{2,401{z}^{4}}[/latex], [latex]{\left({e}^{-2}{f}^{2}\right)}^{7}={\left({e}^{-2}\right)}^{7}\cdot {\left({f}^{2}\right)}^{7}={e}^{-2\cdot 7}\cdot {f}^{2\cdot 7}={e}^{-14}{f}^{14}=\frac{{f}^{14}}{{e}^{14}}[/latex], [latex]{\left({g}^{2}{h}^{3}\right)}^{5}[/latex], [latex]{\left(-3{y}^{5}\right)}^{3}[/latex], [latex]\frac{1}{{\left({a}^{6}{b}^{7}\right)}^{3}}[/latex], [latex]{\left({r}^{3}{s}^{-2}\right)}^{4}[/latex], [latex]\frac{1}{{a}^{18}{b}^{21}}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}[/latex], [latex]{\left(\frac{-1}{{t}^{2}}\right)}^{27}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}[/latex], [latex]{\left(\frac{4}{{z}^{11}}\right)}^{3}=\frac{{\left(4\right)}^{3}}{{\left({z}^{11}\right)}^{3}}=\frac{64}{{z}^{11\cdot 3}}=\frac{64}{{z}^{33}}[/latex], [latex]{\left(\frac{p}{{q}^{3}}\right)}^{6}=\frac{{\left(p\right)}^{6}}{{\left({q}^{3}\right)}^{6}}=\frac{{p}^{1\cdot 6}}{{q}^{3\cdot 6}}=\frac{{p}^{6}}{{q}^{18}}[/latex], [latex]{\\left(\frac{-1}{{t}^{2}}\\right)}^{27}=\frac{{\\left(-1\\right)}^{27}}{{\\left({t}^{2}\\right)}^{27}}=\frac{-1}{{t}^{2\cdot 27}}=\frac{-1}{{t}^{54}}=-\frac{1}{{t}^{54}}[/latex], [latex]{\left({j}^{3}{k}^{-2}\right)}^{4}={\left(\frac{{j}^{3}}{{k}^{2}}\right)}^{4}=\frac{{\left({j}^{3}\right)}^{4}}{{\left({k}^{2}\right)}^{4}}=\frac{{j}^{3\cdot 4}}{{k}^{2\cdot 4}}=\frac{{j}^{12}}{{k}^{8}}[/latex], [latex]{\left({m}^{-2}{n}^{-2}\right)}^{3}={\left(\frac{1}{{m}^{2}{n}^{2}}\right)}^{3}=\frac{{\left(1\right)}^{3}}{{\left({m}^{2}{n}^{2}\right)}^{3}}=\frac{1}{{\left({m}^{2}\right)}^{3}{\left({n}^{2}\right)}^{3}}=\frac{1}{{m}^{2\cdot 3}\cdot {n}^{2\cdot 3}}=\frac{1}{{m}^{6}{n}^{6}}[/latex], [latex]{\left(\frac{{b}^{5}}{c}\right)}^{3}[/latex], [latex]{\left(\frac{5}{{u}^{8}}\right)}^{4}[/latex], [latex]{\left(\frac{-1}{{w}^{3}}\right)}^{35}[/latex], [latex]{\left({p}^{-4}{q}^{3}\right)}^{8}[/latex], [latex]{\left({c}^{-5}{d}^{-3}\right)}^{4}[/latex], [latex]\frac{1}{{c}^{20}{d}^{12}}[/latex], [latex]{\left(6{m}^{2}{n}^{-1}\right)}^{3}[/latex], [latex]{17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}[/latex], [latex]{\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}[/latex], [latex]\left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)[/latex], [latex]{\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}[/latex], [latex]\frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}[/latex], [latex]\begin{array}{cccc}\hfill {\left(6{m}^{2}{n}^{-1}\right)}^{3}& =& {\left(6\right)}^{3}{\left({m}^{2}\right)}^{3}{\left({n}^{-1}\right)}^{3}\hfill & \text{The power of a product rule}\hfill \\ & =& {6}^{3}{m}^{2\cdot 3}{n}^{-1\cdot 3}\hfill & \text{The power rule}\hfill \\ & =& \text{ }216{m}^{6}{n}^{-3}\hfill & \text{Simplify}.\hfill \\ & =& \frac{216{m}^{6}}{{n}^{3}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {17}^{5}\cdot {17}^{-4}\cdot {17}^{-3}& =& {17}^{5 - 4-3}\hfill & \text{The product rule}\hfill \\ & =& {17}^{-2}\hfill & \text{Simplify}.\hfill \\ & =& \frac{1}{{17}^{2}}\text{ or }\frac{1}{289}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left(\frac{{u}^{-1}v}{{v}^{-1}}\right)}^{2}& =& \frac{{\left({u}^{-1}v\right)}^{2}}{{\left({v}^{-1}\right)}^{2}}\hfill & \text{The power of a quotient rule}\hfill \\ & =& \frac{{u}^{-2}{v}^{2}}{{v}^{-2}}\hfill & \text{The power of a product rule}\hfill \\ & =& {u}^{-2}{v}^{2-\left(-2\right)}& \text{The quotient rule}\hfill \\ & =& {u}^{-2}{v}^{4}\hfill & \text{Simplify}.\hfill \\ & =& \frac{{v}^{4}}{{u}^{2}}\hfill & \text{The negative exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \left(-2{a}^{3}{b}^{-1}\right)\left(5{a}^{-2}{b}^{2}\right)& =& -2\cdot 5\cdot {a}^{3}\cdot {a}^{-2}\cdot {b}^{-1}\cdot {b}^{2}\hfill & \text{Commutative and associative laws of multiplication}\hfill \\ & =& -10\cdot {a}^{3 - 2}\cdot {b}^{-1+2}\hfill & \text{The product rule}\hfill \\ & =& -10ab\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill {\left({x}^{2}\sqrt{2}\right)}^{4}{\left({x}^{2}\sqrt{2}\right)}^{-4}& =& {\left({x}^{2}\sqrt{2}\right)}^{4 - 4}\hfill & \text{The product rule}\hfill \\ & =& \text{ }{\left({x}^{2}\sqrt{2}\right)}^{0}\hfill & \text{Simplify}.\hfill \\ & =& 1\hfill & \text{The zero exponent rule}\hfill \end{array}[/latex], [latex]\begin{array}{cccc}\hfill \frac{{\left(3{w}^{2}\right)}^{5}}{{\left(6{w}^{-2}\right)}^{2}}& =& \frac{{\left(3\right)}^{5}\cdot {\left({w}^{2}\right)}^{5}}{{\left(6\right)}^{2}\cdot {\left({w}^{-2}\right)}^{2}}\hfill & \text{The power of a product rule}\hfill \\ & =& \frac{{3}^{5}{w}^{2\cdot 5}}{{6}^{2}{w}^{-2\cdot 2}}\hfill & \text{The power rule}\hfill \\ & =& \frac{243{w}^{10}}{36{w}^{-4}}\hfill & \text{Simplify}.\hfill \\ & =& \frac{27{w}^{10-\left(-4\right)}}{4}\hfill & \text{The quotient rule and reduce fraction}\hfill \\ & =& \frac{27{w}^{14}}{4}\hfill & \text{Simplify}.\hfill \end{array}[/latex], [latex]{\left(2u{v}^{-2}\right)}^{-3}[/latex], [latex]{x}^{8}\cdot {x}^{-12}\cdot x[/latex], [latex]{\left(\frac{{e}^{2}{f}^{-3}}{{f}^{-1}}\right)}^{2}[/latex], [latex]\left(9{r}^{-5}{s}^{3}\right)\left(3{r}^{6}{s}^{-4}\right)[/latex], [latex]{\left(\frac{4}{9}t{w}^{-2}\right)}^{-3}{\left(\frac{4}{9}t{w}^{-2}\right)}^{3}[/latex], [latex]\frac{{\left(2{h}^{2}k\right)}^{4}}{{\left(7{h}^{-1}{k}^{2}\right)}^{2}}[/latex].
North Stafford High School Website,
Mobile Homes For Rent In St Johns County, Fl,
Sherwin Williams Navajo White Vs Benjamin Moore Navajo White,
What Happened To Eben Britton And Mike Tyson,
Articles H