Acetanilide has been in use for treating fever and pain since the late 19th century, but it causes negative side effects; it interferes with the oxygen-carrying capacity of hemoglobin in the body. Individual, individual atoms have formal charge as close to zero as possible. The above resonance structures show that the electrons are delocalized within the molecule and through this process the molecule gains extra stability. However, there is also a third resonance contributor C, in which the carbon bears a positive formal charge (a carbocation) and both oxygens are single-bonded and bear negative charges. A member of the class of acetamides that results from the formal condensation of acetic acid with ammonia. Likewise, the positions of atoms in the molecule cannot change between two resonance contributors. 2) Draw four additional resonance contributors for the molecule below. Charge separation being formal charges on atoms where they would normally like to be neutral. Another way you could think Acetamide has been detected near the center of the Milky Way galaxy. Acetamide (systematic name: ethanamide) is an organic compound with the formula CH 3 CONH 2. So in this resonance structure here, I guess the second resonance structure, the negative formal charge is on nitrogen. The protonation of the oxygen introduces a major resonance contributor that withdraws electrons from the carbon, thus making it more electrophilic and reactive. resonance structure. While on this third one, the negative formal charge is on sulfur. Its like a teacher waved a magic wand and did the work for me. As close to zero as possible. This is the simplest amide of acetic acid derivatives. See Answer So there you have it. formal charge is not zero. So since we have two more You can never shift the location of electrons in sigma bonds if you show a sigma bond forming or breaking, you are showing a chemical reaction taking place. - Structure & Derivatives, What is Trinitrotoluene? Direct link to Richard's post So, Lewis structures are , Posted 2 years ago. Direct link to Richard's post If a molecule does have r, Posted a year ago. Direct link to Tzviofen 's post What does "contributes mo, Posted 2 years ago. An important principle of resonance is that charge separation diminishes the importance of canonical contributors to the resonance hybrid and reduces the overall . Ka and acid strength. - Side Effects, Dosage & Uses, What is Coumarin? Label each one as major or minor (the structure below is of a major contributor). NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions Class 11 Business Studies, NCERT Solutions for Class 10 Social Science, NCERT Solutions for Class 10 Maths Chapter 1, NCERT Solutions for Class 10 Maths Chapter 2, NCERT Solutions for Class 10 Maths Chapter 3, NCERT Solutions for Class 10 Maths Chapter 4, NCERT Solutions for Class 10 Maths Chapter 5, NCERT Solutions for Class 10 Maths Chapter 6, NCERT Solutions for Class 10 Maths Chapter 7, NCERT Solutions for Class 10 Maths Chapter 8, NCERT Solutions for Class 10 Maths Chapter 9, NCERT Solutions for Class 10 Maths Chapter 10, NCERT Solutions for Class 10 Maths Chapter 11, NCERT Solutions for Class 10 Maths Chapter 12, NCERT Solutions for Class 10 Maths Chapter 13, NCERT Solutions for Class 10 Maths Chapter 14, NCERT Solutions for Class 10 Maths Chapter 15, NCERT Solutions for Class 10 Science Chapter 1, NCERT Solutions for Class 10 Science Chapter 2, NCERT Solutions for Class 10 Science Chapter 3, NCERT Solutions for Class 10 Science Chapter 4, NCERT Solutions for Class 10 Science Chapter 5, NCERT Solutions for Class 10 Science Chapter 6, NCERT Solutions for Class 10 Science Chapter 7, NCERT Solutions for Class 10 Science Chapter 8, NCERT Solutions for Class 10 Science Chapter 9, NCERT Solutions for Class 10 Science Chapter 10, NCERT Solutions for Class 10 Science Chapter 11, NCERT Solutions for Class 10 Science Chapter 12, NCERT Solutions for Class 10 Science Chapter 13, NCERT Solutions for Class 10 Science Chapter 14, NCERT Solutions for Class 10 Science Chapter 15, NCERT Solutions for Class 10 Science Chapter 16, NCERT Solutions For Class 9 Social Science, NCERT Solutions For Class 9 Maths Chapter 1, NCERT Solutions For Class 9 Maths Chapter 2, NCERT Solutions For Class 9 Maths Chapter 3, NCERT Solutions For Class 9 Maths Chapter 4, NCERT Solutions For Class 9 Maths Chapter 5, NCERT Solutions For Class 9 Maths Chapter 6, NCERT Solutions For Class 9 Maths Chapter 7, NCERT Solutions For Class 9 Maths Chapter 8, NCERT Solutions For Class 9 Maths Chapter 9, NCERT Solutions For Class 9 Maths Chapter 10, NCERT Solutions For Class 9 Maths Chapter 11, NCERT Solutions For Class 9 Maths Chapter 12, NCERT Solutions For Class 9 Maths Chapter 13, NCERT Solutions For Class 9 Maths Chapter 14, NCERT Solutions For Class 9 Maths Chapter 15, NCERT Solutions for Class 9 Science Chapter 1, NCERT Solutions for Class 9 Science Chapter 2, NCERT Solutions for Class 9 Science Chapter 3, NCERT Solutions for Class 9 Science Chapter 4, NCERT Solutions for Class 9 Science Chapter 5, NCERT Solutions for Class 9 Science Chapter 6, NCERT Solutions for Class 9 Science Chapter 7, NCERT Solutions for Class 9 Science Chapter 8, NCERT Solutions for Class 9 Science Chapter 9, NCERT Solutions for Class 9 Science Chapter 10, NCERT Solutions for Class 9 Science Chapter 11, NCERT Solutions for Class 9 Science Chapter 12, NCERT Solutions for Class 9 Science Chapter 13, NCERT Solutions for Class 9 Science Chapter 14, NCERT Solutions for Class 9 Science Chapter 15, NCERT Solutions for Class 8 Social Science, NCERT Solutions for Class 7 Social Science, NCERT Solutions For Class 6 Social Science, CBSE Previous Year Question Papers Class 10, CBSE Previous Year Question Papers Class 12, Important Questions For Class 12 Chemistry, Important Questions For Class 11 Chemistry, Important Questions For Class 10 Chemistry, Important Questions For Class 9 Chemistry, Important Questions For Class 8 Chemistry, Important Questions For Class 7 Chemistry, Important Questions For Class 6 Chemistry, Class 12 Chemistry Viva Questions With Answers, Class 11 Chemistry Viva Questions With Answers, Class 10 Chemistry Viva Questions With Answers, Class 9 Chemistry Viva Questions With Answers, CBSE Previous Year Question Papers Class 10 Science, CBSE Previous Year Question Papers Class 12 Physics, CBSE Previous Year Question Papers Class 12 Chemistry, CBSE Previous Year Question Papers Class 12 Biology, ICSE Previous Year Question Papers Class 10 Physics, ICSE Previous Year Question Papers Class 10 Chemistry, ICSE Previous Year Question Papers Class 10 Maths, ISC Previous Year Question Papers Class 12 Physics, ISC Previous Year Question Papers Class 12 Chemistry, ISC Previous Year Question Papers Class 12 Biology, JEE Main 2023 Question Papers with Answers, JEE Main 2022 Question Papers with Answers, JEE Advanced 2022 Question Paper with Answers. The resulting resonance contributor, in which the oxygen bears the formal charge, is the major one because all atoms have a complete octet, and there is one additional bond drawn (resonance rules #1 and #2 both apply). Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. 5) Draw the major resonance contributor for each of the anions below: Example 2.5.1: Multiple Resonance of other Molecules, Rules for Drawing and Working with Resonance Contributors, Rules for Estimating Stability of Resonance Structures, status page at https://status.libretexts.org. two resonance structures as contributing more When looking at a resonance contributors, we are seeing the exact same molecule or ion depicted in different ways. What is the Difference Between Cis and Trans Fats? resonance structure here. In what kind of orbitals are the two lone pairs on the oxygen? 4) All resonance contributors must be correct Lewis structures. A case in point is acetamide (acetic acid + amide). It's chemical formula is usually written as C6 H5 NHCOCH3. In this video, we use these guidelines to evaluate the nonequivalent resonance structures of SCN. Jayashree has taught high school chemistry for over thirty years. 2) The resonance hybrid is more stable than any individual resonance structures. How do we know that structure C is the minor contributor? And they have given us It finds some use as a plasticizer and as an industrial solvent. Draw one valid Lewis structure (including all lone pair electrons and any formal charges) for CH_2N_2. It acts as a negative catalyst in the decomposition of hydrogen peroxide. So any formal charge, so once again, we're not GACE Special Education Mathematics & Science (088): Practice & Study Guide, Praxis Chemistry: Content Knowledge (5245) Prep, ILTS Science - Chemistry (106): Test Practice and Study Guide, CSET Science Subtest II Chemistry (218): Practice & Study Guide, College Chemistry: Homework Help Resource, Physical Science for Teachers: Professional Development, General Chemistry Syllabus Resource & Lesson Plans, Prentice Hall Chemistry: Online Textbook Help, GACE Chemistry (528): Practice & Study Guide, Create an account to start this course today. ChemSpider ID 173. Acetanilide | C8H9NO | CID 904 - structure, chemical names, physical and chemical properties, classification, patents, literature, biological activities, safety . Which resonance structure can account for the planar geometry about the nitrogen atom? Remember that the molecule does not actually switch between these structures. As it so happens, it's the main topic of our lesson today. Pauling scale electronegativity, so maybe that is going to be useful for thinking about basing on the, based on the formal charges, which of the three An accelerator is a chemical added to rubber during vulcanization. Also note that one additional contributor can be drawn, but it is also minor because it has a carbon with an incomplete octet: 1) For the following resonance structures please rank them in order of stability. In the DEPA with polymeric nanomicelles the hydrodynamic mean exhibited typical core shell structure of micelle with an eight fold lower lethal concentration (48h) for C. tritaeniorhynchus 3rd instar larvae in relation with that of bulk DEPA. Include in your figure the appropriate curved arrows showing how you got from the given structure to your structure. This work documents the properties of a number of isomers of molecular formula C2H5NO from the most stable, acetamide, through 1,2-oxazetidine and including even higher energy species largely of a dipolar nature. It is derived from acetic acid. - Uses, Structure & Production, What is Mercaptopurine? However, as will learn in chapter 19, the positively charged carbon created by structure B will explain how the C=O bond will react with electron rich species. It is combustible and generates toxic gas or fumes when heated. + 2 V = 6 * 4 + 2 24 = 2. It's the same kind of idea when we 'tie up' the electrons on the nitrogen atom through resonance, they can't be used anymore! However, sometimes benzene will be drawn with a circle inside the hexagon, either solid or dashed, as a way of drawing a resonance hybrid. Figure 1. Hope that helps. Include all three resonance structures by alternating the double bond among the three oxygen atoms. 4) This contributor is major because there are no formal charges. [5] The related compound N, N -dimethylacetamide (DMA) is more widely used, but it is not prepared from acetamide. Any negative formal charge Assume the atoms . Acetamide can be considered an intermediate between acetone, which has two methyl (CH3) groups either side of the carbonyl (CO), and urea which has two amide (NH2) groups in those locations. A carboximidic acid that is acetic acid in which the carbonyl oxygen is replaced by an imino group. This means the two structures are equivalent in stability and would make equal structural contributions to the resonance hybrid. Acetamide is an acetic acid-derived chemical that has been identified as smelling like vinegar or ammonia. Naphthalene Structure, Properties & Melting Point | What is Naphthalene? talking about the charge of the entire ion. . If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked. Today, we're going to be talking about acetanilide in terms of its chemical formula, resonance structures, and some of its important derivatives. - Formula, Structure & Properties, What is Acetophenone? these resonance structures get closest to these ideals. The plasticizer does not change the chemical structure and properties of the polymer. Molecules with a Single Resonance Configuration. Acetamide 60-35-5 544-44-5 53318-35-7. It is widely used as a plasticizer. exercise for the carbon here. So individual atoms have - Definition, Uses & Structure, Spectroscopy in Organic Chemistry: Help & Review, Organic Reactions & Mechanisms: Help & Review, Microbiology Syllabus Resource & Lesson Plans, Middle School Earth Science Curriculum Resource & Lesson Plans, Physical Science Curriculum Resource & Lesson Plans, What is Ethnographic Fieldwork? formal charges close to zero as possible. Did you know that there's a pain medication that used to be quite common but is no longer in use? [11] It is a precursor to thioacetamide.[12]. Resonance structures for an amide. So, Lewis structures are just how we can model the structure of molecules by placing the valance electrons of the atoms. Stabilization of a conjugate base: induction. Molecular and ionic compound structure and properties, Creative Commons Attribution/Non-Commercial/Share-Alike. The first structure of acetanilide is exactly like the one we saw previously, but notice how the second is different. The first resonance structure of acetamide, CH, CONH,, is shown. Structure A would be the major resonance contributor. To help understand these properties, we need to look at a more complex -- but better -- representation of the amide structure. How many electrons are shared in a single bond? This entity has been manually annotated by the ChEBI Team. - Structure, Synthesis & Derivatives, What Is Hydroxyquinoline? Acetanilide shows two resonance structures that differ in the way atoms bond with each other. What does each line represent in the diagram = ? in preparation of cosmetics and hypnotics. CSID:173, http://www.chemspider.com/Chemical-Structure.173.html (accessed 16:23, Mar 4, 2023), Validated by Experts, Validated by Users, Non-Validated, Removed by Users, Predicted data is generated using the ACD/Labs Percepta Platform - PhysChem Module, Predicted data is generated using the US Environmental Protection Agencys EPISuite, Click to predict properties on the Chemicalize site, For medical information relating to Covid-19, please consult the. A, 719, 1996, 131-139. ass: Standard polar; Column diameter: 0.25 mm; Column length: 30 m; Column type: Capillary; Heat rate: 2 K/min; Start T: 70 C; End T: 160 C; Start time: 8 min; CAS no: 60355; Active phase: DB-Wax; Carrier gas: He; Data type: Normal alkane RI; Authors: Wong, J.M. Introduction Non-covalent interactions govern a wide range of different processes in chemistry, biology and materials science. The >CONH2 is the amide functional group. Varnishes like cellulose ester have acetanilide as an additive. Draw the major resonance contributor of the structure below. CHEBI:7331, CHEBI:22164. 5. - Properties & Explanation, Acetonitrile: Production, Hazards & Waste Disposal, What is Acetonitrile? Draw the Lewis structure for acetamide (CH 3 CONH 2), an organic compound, and determine the geometry of each interior atom.Experiments show that the geometry of the nitrogen atom in acetamide is nearly planar. The combination of one or more structures used to portray the chemical bonding in molecules is known as the resonance structure. When a molecule has nonequivalent resonance structures, one structure may contribute more to the resonance hybrid than another. Now we can do the same { Amides_Background : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Amide_Occurrences_and_Uses : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Physical_Properties_of_Carboxylic_Acid_Derivatives : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Structure_of_Amides : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { Nomenclature_of_Amides : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Amides : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Reactivity_of_Amides : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Synthesis_of_Amides : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FOrganic_Chemistry%2FSupplemental_Modules_(Organic_Chemistry)%2FAmides%2FProperties_of_Amides%2FStructure_of_Amides, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Physical Properties of Carboxylic Acid Derivatives, status page at https://status.libretexts.org. The resonance system shown in Figure 2 is based on measurements of the properties of amides. The molecular or chemical formula of Acetamide is C 2 H 5 NO. ?) 106 lessons. However, its IUPAC name is N-phenylacetamide. We're talking about individual Legal. When a molecule has nonequivalent resonance structures, one structure may contribute more to the resonance hybrid than another. { "2.01:_Polar_Covalent_Bonds_-_Electronegativity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.02:_Polar_Covalent_Bonds_-_Dipole_Moments" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.03:_Formal_Charges" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.04:_Resonance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.05:_Rules_for_Resonance_Forms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.06:_Drawing_Resonance_Forms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.07:_Acids_and_Bases_-_The_Brnsted-Lowry_Definition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.08:_Acid_and_Base_Strength" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.09:_Predicting_Acid-Base_Reactions_from_pKa_Values" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.10:_Organic_Acids_and_Organic_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.11:_Acids_and_Bases_-_The_Lewis_Definition" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.12:_Noncovalent_Interactions_Between_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.MM:_Molecular_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "2.S:_Polar_Covalent_Bonds_Acids_and_Bases_(Summary)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Structure_and_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Polar_Covalent_Bonds_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Organic_Compounds-_Alkanes_and_Their_Stereochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Organic_Compounds-_Cycloalkanes_and_their_Stereochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Stereochemistry_at_Tetrahedral_Centers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_An_Overview_of_Organic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Alkenes-_Structure_and_Reactivity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Alkenes-_Reactions_and_Synthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Alkynes_-_An_Introduction_to_Organic_Synthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Organohalides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Reactions_of_Alkyl_Halides-_Nucleophilic_Substitutions_and_Eliminations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Structure_Determination_-_Mass_Spectrometry_and_Infrared_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Structure_Determination_-_Nuclear_Magnetic_Resonance_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Conjugated_Compounds_and_Ultraviolet_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Benzene_and_Aromaticity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Chemistry_of_Benzene_-_Electrophilic_Aromatic_Substitution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Alcohols_and_Phenols" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Ethers_and_Epoxides_Thiols_and_Sulfides" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Aldehydes_and_Ketones-_Nucleophilic_Addition_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Carboxylic_Acids_and_Nitriles" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Carboxylic_Acid_Derivatives-_Nucleophilic_Acyl_Substitution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Carbonyl_Alpha-Substitution_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Carbonyl_Condensation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Amines_and_Heterocycles" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Biomolecules-_Carbohydrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Biomolecules-_Amino_Acids_Peptides_and_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_Biomolecules_-_Lipids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Biomolecules_-_Nucleic_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_30:_Orbitals_and_Organic_Chemistry_-_Pericyclic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "Chapter_31:_Synthetic_Polymers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "license:ccbysa", "resonance contributors", "licenseversion:40", "author@Steven Farmer", "author@Dietmar Kennepohl", "author@Krista Cunningham", "author@Tim Soderberg", "author@William Reusch", "resonance hybride" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FOrganic_Chemistry%2FOrganic_Chemistry_(Morsch_et_al.